

Grading

- Hour Examinations (3)
- Quizzes (about weekly)
- Lab

30\%

- Final Exam (comprehensive) 30\%
- No Make Up Quizzes
- Mobile phones, PDAs, and graphing calculators not permitted for exams
- Academic Dishonesty Penalty - You fail the assignment and will be reported to the Dean of Students, minimum

Student Conduct

- Silence mobile phones, pagers and other devices that may disturb others during class
- Harassment of any kind is not permitted. Report incidents immediately to me.

Get Supplemental Help

- Instructor: Dr. Michael Love
- Lecture time, office hours L107 (see syllabus)
- Email: mlove@sussex.edu
- Science Resource Center (B300)
- Students with special needs, contact me.

Define Chemical Elements

- Find on periodic table
- pure substances that cannot be decomposed by ordinary means to other substances.

Sodium
d

What is the Periodic Table?

- Lists

- element names
- element symbols
- atomic numbers
- molar masses
- electron
configuration

Atom consists of a

- nucleus that contains
- protons and
-neutrons
- electrons in space about the nucleus.

atoms on

 silica surface.Distance across $=1.8$ nanometer $\left(1.8 \times 10^{-9} \mathrm{~m}\right)$

Define Atom

- smallest particle of an element that has the chemical properties of the element.

CHEMICAL COMPOUNDS
consist of different atoms and can be decomposed to those atoms.

The red compound is composed of nickel (Ni) (silver) carbon (C) (black)
oxygen (O) (red) nitrogen (N) (blue)

The Nature of Marter

Gold

Chemists are interested in the nature of matter and how this is related to its atoms and molecules.

Chemistry \& Matter

- We can explore the MACROSCOPIC world - what we can see -
- to understand the PARTICULATE worlds we cannot see.
- We write SYMBOLS to describe these worlds.

Matter has States

- SOLIDS - have rigid shape, fixed volume. External shape can reflect the atomic and molecular arrangement.
- Reasonably well understood.
- LIQUIDS - have no fixed shape and may not fill a container completely. - Not well understood.
- GASES - expand to fill their container.
- Good theoretical understanding.

Physical changes alter the ${ }^{26}$ state of matter

- boiling a liquid
- freezing a liquid
- melting a solid
- subliming a solid
- depositing a gas
- condensing a gas
- dissolving a solid in a liquid to give a solution
- crushing a solid

Chemical properties and chemical change alter the composition of matter

- Chemical change or chemical reaction transformation of one or more atoms or molecules into one or more different molecules.

Types of Observations and Measurements

- QUALITATIVE observations include changes in color and physical state. (What is it?)
- QUANTITATIVE measurements involve numbers. (How much?)
- Use SI units - based on the metric system

UNITS OF MEASUREMENT	
Use SI units - based on the metric system	
Length	Meter, m
Mass	Kilogram, kg
Time	Seconds, s
Temperature	Celsius degrees, ${ }^{\circ} \mathrm{C}$ kelvins, K

Calculations Using Temperature

Convert Temperatures

- Equation for converting ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$.

$$
{ }^{\circ} \mathrm{F}=1.8^{\circ} \mathrm{C}+32
$$

Given on help sheet

- Be able to solve this equation for ${ }^{\circ} \mathrm{C}$.
-Body temp $=37^{\circ} \mathrm{C}+273=310 \mathrm{~K}$
-Liquid nitrogen $=-196{ }^{\circ} \mathrm{C}+273=77 \mathrm{~K}$

UNITS OF MEASUREMENT	
Use SI units - based on the metric system	
Length	Meter, m
Mass	Kilogram, kg
Time	Seconds, s
Temperature	Celsius degrees, ${ }^{\circ} \mathrm{C}$ kelvins, K

	now	etric	Pre	kes	
Prefix	Abbreviation	Meaning	Value	Example	
mega-	M	million	1×10^{6}	megagram	
kilo-	k	thousand	1×10^{3}	kilogram	-
-	-	1	1×10^{0}	gram	
deci-	d	tenth	1×10^{-1}	decigram	
centi-	c	hundredth	1×10^{-2}	centigram	
milli-	m	thousandth	1×10^{-3}	milligram	
micro-	μ	millionth	1×10^{-6}	microgram	
nano-	n	billionth	1×10^{-9}	nanogram	
pico-	p	trillionth	1×10^{-12}	picogram	
femto-	f	-	1×10^{-15}	femtogram	small
The number zero 0 is smaller than all of these					

Convert Units of Mass

Q) 1.0 cg equals how many $m g$?

- 1 kilogram $(\mathrm{kg})=1 \times 10^{3}$ grams (g)
- 1 centigram $(\mathrm{cg})=1 \times 10^{-2}$ grams (g)
- 1 milligram $(\mathrm{mg})=1 \times 10^{-3}$ grams (g)
- 1 centigram $(\mathrm{cg})=10$ milligram (mg)
$1.0 \mathrm{cg} \times \frac{1 \times 10^{-2} g}{1 \mathrm{cg}} \times \frac{\mathrm{mg}}{1 \times 10^{-3} g}=10 . \mathrm{mg}$

Convert Units of Volume

- 1 liter (L) $=1000 \mathrm{ml}=1000 \mathrm{~cm}^{3}$
- 1 liter (L) $=1$ dm 3
- $1 \mathrm{~cm}^{3}=0.001 \mathrm{~L}=1 \mathrm{~mL}$

Percent Error - measure of accuracy Experimental value - Accepted value			
$\text { Percent Error }=\xlongequal[\text { Accepted Value }]{ } \text { * } 100 \%$			
Accepted (certified) mass $=10.0 \mathrm{~g}$ Experimental (measured) mass $=11.0 \mathrm{~g}$			
Percent Error $=(11.0 \mathrm{~g}-10.0 \mathrm{~g}) / \mathbf{1 0 . 0} \mathrm{g} * 100 \%=10.0 \%$			
Q 2006			

Explain Significant Digits

- Each number in a properly recorded measurement is a significant digit (or significant figure).
- The significant digits tell the precision (uncertainty, or the \pm) of a measurement, where the uncertainty of the last significant digit is presumed to be ± 1.
- When you count significant digits, start counting from the left with the first non-zero number.
- Placeholder zeros are presumed not to be significant.
- How many significant digits?
$\begin{array}{lllll}-7 & 6000 & 3001 & 2000.00 & 200 .\end{array}$
$\begin{array}{llll}\text { - } 0.001 & 0.0013 & 100.001 & 1111\end{array}$

Explain Exact Numbers

- When we count something, it is an exact number.
- Metric conversions are exact numbers.

- Definitions are exact numbers
- Exact numbers have as many significant digits as are needed, so they don't affect significant digits in calculations.
- Example of exact numbers:

3 coins on this slide (counting)
$1 \mathrm{~kg}=1000 \mathrm{~g}$ (metric)
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$ (metric)
$1 \mathrm{in}=2.54 \mathrm{~cm}$ (definition)

Rounding Numbers

- All numbers from a measurement are significant. However, we often generate nonsignificant digits when performing calculations.
- We get rid of nonsignificant digits by rounding off numbers.
- There are three rules for rounding off numbers.

Rules for Rounding Numbers

1. If the first nonsignificant digit is less than 5 , drop all nonsignificant digits.
2. If the first nonsignificant digit is greater than or equal to 5 , increase the last significant digit by 1 and drop all nonsignificant digits.
3. If a calculation has two or more operations, retain all nonsignificant digits until the final operation and then round off the answer.

Rules for Significant Digits

- Addition and subtraction rule
- Multiplication and division rule
- Significant digits come from measurements (or data in a problem). Keep track of SD during calculations by applying each rule as you need it.

Multiply \& Divide Measurements

- When multiplying or dividing measurements, the answer is limited by the measurement with the fewest significant digits.
- Lets multiply two length measurements.

$$
>5.15 \mathrm{~cm} \times 2.3 \mathrm{~cm}=11.845 \mathrm{~cm}^{2}
$$

- The measurement 2.3 cm has the fewest significant digits, two.
- The correct answer is $12 \mathrm{~cm}^{2}$.

Rounding Numbers

- A calculator displays 12.846239 and 3 significant digits are justified.
- The first nonsignificant digit is a 4 , so we drop all nonsignificant digits and get (12.8) as the answer.
- A calculator display 12.856239 and 3 significant digits are justified. $\quad \uparrow$
- The first nonsignificant digit is a 5 , so the last significant digit is increased by one to 9 , all the nonsignificant digits are dropped, and we get 12.9 as the answer.

Add \& Subtract Measurements

- When adding or subtracting measurements, the answer is limited by the value with the most uncertainty.
- Lets add three mass measurements.
- The measurement 5 g has the greatest uncertainty ($\pm \mathbf{1 g}$).
- The correct answer is 15 g .
- 2 significant digits in the answer

Powers of Ten

- A power of 10 is a number that results when 10 is raised to an exponential power.
- The power can be positive (number greater than 1) or negative (number less than 1).

Scientific Notation

- Numbers in science are often very large or very small. To avoid confusion, we use scientific notation.
- Scientific notation uses the significant digits in a measurement followed by a power of ten.

Scientific Notation Example

- There are $26,800,000,000,000,000,000,000$ helium atoms in 1.00 L of helium gas. Express the number in scientific notation.
- Place the decimal after the $\mathbf{2}$, followed by the other significant digits.
- Count the number of places the decimal has moved to the left (22). Use this as the power of 10 to complete the scientific notation.

$$
2.68 \times 10^{22} \text { atoms }
$$

- Note 3 significant digits in both numbers

Scientific Notation and Calculators

- Be sure that you know how to enter scientific notation on your calculator!
- 1.40×10^{-7} is often entered
1.40 EXP $7+$ +/
- The display might read 1.4^{-07} to represent the number 1.40×10^{-7}.
- Calculators usually do not track significant digits. You need to do it.

Applying Scientific Notation

- To use scientific notation, first place a decimal after the first nonzero digit in the number followed by the remaining significant digits.
- Indicate how many places the decimal is moved by the power of 10 .

Scientific Notation Example

- The typical length between two carbon atoms in a molecule of benzene is 0.000000140 m . What is the length expressed in scientific notation?
- Place the decimal after the $\mathbf{1}$, followed by the other significant digits.
- Count the number of places the decimal has moved to the right (7). Use this as a negative power of $\mathbf{1 0}$ to complete the scientific notation.

$$
1.40 \times 10^{-7} \mathrm{~m}
$$

- Note 3 significant digits in both numbers

Strategy

1. Get dimensions in common units.
2. Calculate volume in cubic centimeters.
3. Calculate the density.

SOLUTION

1. Get dimensions in common units.

$$
0.95 \mathrm{~mm} \cdot \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}=0.095 \mathrm{~cm}
$$

2. Calculate volume in cubic centimeters.
$(9.36 \mathrm{~cm})(7.23 \mathrm{~cm})(0.095 \mathrm{~cm})=6.4289 \mathrm{~cm}^{3}$
Note 2 significant digits
3. Calculate the density.
$57.54 \mathrm{~g} / 6.4289 \mathrm{~cm}^{3}=8.9502 \mathrm{~g} / \mathrm{cm}^{3}=9.0 \mathrm{~g} / \mathrm{cm}^{3}$
 ${ }^{2000}$

PROBLEM: Mercury (Hg) has a density of $13.6 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of 95 mL of Hg ?

First, note that $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

Strategy

1. Use density to calc. mass (g) from volume.
2. Convert mass (g) to mass (lb) Need to know conversion factor $=454 \mathrm{~g} / 1 \mathrm{lb}$ $\mathrm{g} / \mathrm{cm}^{3}$. What is the mass of 95 mL of Hg ?
3. Convert volume to mass
$95 \mathrm{~cm}^{3} \cdot \frac{13.6 \mathrm{~g}}{\mathrm{~cm}^{3}}=1.3 \times 10^{3} \mathrm{~g}$
4. Convert mass (g) to mass (lb)
$1.3 \times 10^{3} \mathrm{~g} \cdot \frac{1 \mathrm{lb}}{454 \mathrm{~g}}=2.8 \mathrm{lb}$

Conversion Factors

- You should know the metric conversion factors and how to use them (handout) because these are often not provided.
- Conversion factors between British and metric units are usually provided (See Kotz Page A12 and A13)

Standard Deviation

- Standard Deviation is a measure of precision for a series of measurements (X_{i})
- Measured Values (X_{i})
- Average Value ($\mathrm{X}_{\mathrm{bar}}$)
- $\mathrm{n}=$ number of measurements
- Standard Deviation =

Square Root \{Sum ($\left.\left.\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\text {bar }}\right)^{2} / \mathrm{n}\right\}$
Your calculator can often calculate standard deviation for you.

