

- Silence mobile phones, pagers and other devices that may disturb others during class
- Harassment of any kind is not permitted. Report incidents immediately to me.

Get Supplemental Help • Instructor: Dr. Michael Love – Lecture time, office hours L107 (see syllabus) – Email: mlove@sussex.edu • Science Resource Center (B300) • Students with special needs, contact me.

How to Succeed in Chemistry

- Take, read and summarize your lecture notes
- Do the homework

5

- · Ask questions and keep up with the material
- Study 12 hours weekly based on 3 class
- hours
 Prepare, Practice, Repetition, Effort
 - Redo the homework as practice for quizzes
 - Redo quizzes and homework for the exams
 Work problems forwards and backwards
 - Work problems forwards and backw
 Study lab problems
 - Redo quizzes, homework, and exams for the final
 - Join a study group

4

6

Define Chemical Elements

9

- Find on periodic table
- pure substances that cannot be decomposed by ordinary means to other substances.

Physical properties describe matter

- color
- liquid
- melting point
- boiling point
- odor
- density
- brittleness

	Physical Properties		
Property	Example		
Qualitative			
Color	Sulfur is yellow.		
Odor	Hydrogen sulfide stinks.		
Solubility	Table salt dissolves in water.		
Hardness	Diamond is exceptionally hard.		
Electrical conductivity	Copper conducts electricity.		
Quantitative			
Mass	A nickel has a mass of 5 grams.		
Temperature	Water for the bath is at $40 ^{\circ}C$.		
Melting point	Lead melts at 327.5 °C.		
Density	At 20 °C, water has a density of 0.998 grams per milliliter.		
	Chemical Properties		
Substance	Typical Chemical Property		
Iron	Rusts (combines with oxygen to form iron oxide)		
Carbon	Undergoes combustion (combines with oxygen to form carbon		
	dioxide)		
Silver	Tarnishes (combines with sulfur to form silver sulfide)		
Sodium	Reacts violently with water to form hydrogen gas and a		
	solution of sodium hydroxide.		
Nitroglycerin	Explodes (decomposes, when detonated, to a mixture of gases)		

UNITS OF N	MEASUREMENT ³¹
Use <mark>SI units</mark> metric syste	— based on the em
Length	Meter, m
Mass	Kilogram, kg
Time	Seconds, s
	Celsius degrees, °C kelvins, K

Temperature Scales					
Boiling point of water	Fahrenheit 212 °F 180°F	Celsius 100 °C 100°C	Kelvin 373 K 100 K		
Freezing point of water	32 °F	0°C	273 K		

Convert Temperatures

36

• Equation for converting °C to °F.

 $^{\circ}F = 1.8 \ ^{\circ}C + 32$

Given on help sheet

• Be able to solve this equation for °C.

UNITS OF M	MEASUREMENT ³⁷
Use <mark>SI units</mark> metric syste	— based on the em
Length	Meter, m
Mass	Kilogram, kg
Time	Seconds, s
	Celsius degrees, °C kelvins, K

I	Know A	Netric	Pret	fixes	Given
Prefix	Abbreviation	Meaning	Value	Example	DIC
mega-	м	million	1 x 10 ⁶	megagram	BIG
kilo-	k	thousand	1 x 10 ³	kilogram	
-	-	1	1 x 10º	gram	
deci-	d	tenth	1 x 10 ⁻¹	decigram	4 4
centi-	с	hundredth	1 x 10 ⁻²	centigram	
milli-	m	thousandth	1 x 10 ⁻³	milligram	
micro-	μ	millionth	1 x 10 ⁻⁶	microgram	
nano-	n	billionth	1 x 10 ⁻⁹	nanogram	
pico-	р	trillionth	1 x 10 ⁻¹²	picogram	
femto-	f	-	1 x 10 ⁻¹⁵	femtogram	small
		The r	number zero	0 is smaller than a	II of these

Convert Units of Mass

Q) 1.0cg equals how many mg?

- 1 kilogram (kg) = 1 x 10³ grams (g)
- 1 centigram (cg) = 1 x 10⁻² grams (g)
- 1 milligram (mg) = 1 x 10⁻³ grams (g)
- 1 centigram (cg) = 10 milligram (mg)

$$1.0cg \times \frac{1x10^{-2}g}{1cg} \times \frac{mg}{1x10^{-3}g} = 10.mg$$

Convert Units of Volume

- 1 liter (L) = 1000 ml = 1000 cm³
- 1 liter (L) = 1 dm³
- 1 cm³ = 0.001 L = 1 mL

Percent Error – measure of accuracy	43
Experimental value – Accepted value Percent Error = ——— * 100% Accepted Value	
Accepted (certified) mass = 10.0 g Experimental (measured) mass = 11.0 g	
Percent Error = (11.0 g – 10.0 g) / 10.0 g * 100% = 10.0%	
6 2006	

- All numbers from a measurement are significant. However, we often generate <u>nonsignificant digits</u> when performing calculations.
- We get rid of nonsignificant digits by *rounding off* numbers.
- There are three rules for rounding off numbers.

Rules for Rounding Numbers

- 1. If the first nonsignificant digit is less than 5, drop all nonsignificant digits.
- 2. If the first nonsignificant digit is greater than or equal to 5, increase the last significant digit by 1 and drop all nonsignificant digits.
- 3. If a calculation has two or more operations, retain all nonsignificant digits until the final operation and then round off the answer.

Rounding Numbers

- A calculator displays 12.846239 and 3 significant digits are justified.
- The first nonsignificant digit is a 4, so we drop all nonsignificant digits and get (2.8) as the answer.
- A calculator display 12.856239 and 3 significant digits are justified.
- The first nonsignificant digit is a 5, so the last significant digit is increased by one to 9, all the nonsignificant digits are dropped, and we get (2.9) as the answer.

Rules for Significant Digits

- Addition and subtraction rule
- Multiplication and division rule
- Significant digits come from measurements (or data in a problem). Keep track of SD during calculations by applying each rule as you need it.

Multiply & Divide Measurements • When multiplying or dividing measurements, the answer is limited by the measurement with the *fewest significant digits*. • Lets multiply two length measurements. • 5.15 cm × 2.3 cm = 11.845 cm² • The measurement 2.3 cm has the fewest significant digits, two. • The correct answer is 12 cm².

Chapter 1 — Introduction

Scientific Notation and Calculators

- Be sure that you know how to enter scientific notation on your calculator!
- 1.40 x 10⁻⁷ is often entered 1.40 EXP 7 +/-
- The display might read 1.4⁻⁰⁷ to represent the number 1.40 x 10⁻⁷.
- Calculators usually do not track significant digits. You need to do it.

