

Empirical and Molecular Formulas			
- A molecular formula gives the number of each kind of atom in a molecule. - An empirical formula gives the (whole number) ratio of atoms of elements in a compound.			
Compound Molecular formula Empirical formula Hydrogen peroxide $\mathrm{H}_{2} \mathrm{O}_{2}$ HO Octane $\mathrm{C}_{8} \mathrm{H}_{18}$????			

Calculate Mass Percent Composition

Consider NO_{2}, Molar mass = ?
What is the mass percent of N and of O ?

$$
\begin{aligned}
& \text { Mass \% N }=\frac{14.0 \mathrm{~g} \mathrm{~N}^{46.0 \mathrm{~g} \mathrm{NO}_{2}} \cdot 100 \%=30.4 \%}{\text { Mass } \% \mathrm{O}=\frac{2(16.0 \mathrm{~g} \mathrm{O})}{46.0 \mathrm{~g} \mathrm{NO}_{2}} \cdot 100 \%=69.6 \%}
\end{aligned}
$$

What are the mass percentages of \mathbf{N} and O in NO ?

A compound of B and H is $81.10 \% B$. What is its empirical formula?

- Because it contains only B and H, it must contain $18.90 \% \mathrm{H}$.
- In 100.0 g of the compound there are 81.10 g of B and 18.90 g of H .
- Calculate the number of moles of each constituent.

Calculate the number of moles of each element in 100.0 g of sample.
$81.10 \mathrm{~g} \mathrm{~B} \cdot \frac{1 \mathrm{~mol}}{10.81 \mathrm{~g}}=7.502 \mathrm{~mol} \mathrm{~B}$
$18.90 \mathrm{~g} \mathrm{H} \cdot \frac{1 \mathrm{~mol}}{1.008 \mathrm{~g}}=18.75 \mathrm{~mol} \mathrm{H}$
A compound of B and H is $81.10 \% B$. What is its empirical formula?

Now, recognize that atoms combine in the ratio of small whole numbers.

$$
1 \text { atom } \mathrm{B}+3 \text { atoms } \mathrm{H} \text {--> } 1 \text { molecule } \mathrm{BH}_{3}
$$

or

1 mol B atoms +3 mol H atoms --->
$1 \mathrm{~mol} \mathrm{BH}_{3}$ molecules
Find the ratio of moles of elements in the compound.
A compound of B and H is 81.10% B. What is its empirical formula?

Take the ratio of moles of B and H. Always divide by the smaller number.
$\frac{18.75 \mathrm{~mol} \mathrm{H}}{7.502 \mathrm{~mol} \mathrm{~B}}=\frac{2.499 \mathrm{~mol} \mathrm{H}}{1.000 \mathrm{~mol} \mathrm{~B}}=\frac{2.5 \mathrm{~mol} \mathrm{H}}{1.0 \mathrm{~mol} \mathrm{~B}}$

But we need a whole number ratio.
$2.5 \mathrm{~mol} \mathrm{H} / 1.0 \mathrm{~mol} \mathrm{~B}=5 \mathrm{~mol} \mathrm{H}$ to 2 mol B
EMPIRICAL FORMULA $=\mathrm{B}_{2} \mathrm{H}_{5}$

- PROBLEM: A compound of B and H is 81.10% B. What is its empirical formula?
- Stepwise solution

- B 81.10\% 81.10g $7.502 \mathrm{~mol} 1 \quad 2 \mathrm{~B}_{2} \mathrm{H}_{5}$
- H $18.90 \% \quad 18.90 \mathrm{~g} 18.75 \mathrm{~mol} 2.55$
A compound of B and H is $81.10 \% B$. Its empirical formula is $\mathrm{B}_{2} \mathrm{H}_{5}$. What is its molecular formula?

Is the molecular formula $\mathrm{B}_{2} \mathrm{H}_{5}, \mathrm{~B}_{4} \mathrm{H}_{10}$, $\mathrm{B}_{6} \mathrm{H}_{15}, \mathrm{~B}_{8} \mathrm{H}_{20}$, etc.?

$B=10.811$
$H=1.0079$
$\mathrm{B}_{2} \mathrm{H}_{6}$ is one example of this class of compounds
© 2006

A compound of B and H is $81.10 \% B$. Its empirical formula is $\mathrm{B}_{2} \mathrm{H}_{5}$. What is its molecular formula?

We need to do an EXPERIMENT to find the MOLAR MASS.
Here experiment gives $53.3 \mathrm{~g} / \mathrm{mol}$
Compare with the mass of $\mathrm{B}_{2} \mathbf{H}_{5} \quad \mathrm{~B}=10.811$ $=26.66$ g/unit
$H=1.0079$
Find the ratio of these masses.
$53.3 \mathrm{~g} / \mathrm{mol}=\frac{2 \text { units of } \mathrm{B}_{2} \mathrm{H}_{5}}{1 \mathrm{~m}}$
$26.66 \mathrm{~g} / \mathrm{unit}$ of $\mathrm{B}_{2} \mathrm{H}_{5}=1 \mathrm{~mol}$
Molecular formula $=\mathrm{B}_{4} \mathrm{H}_{10}$
© 2006

Tin and Iodine Compound

Now find the number of moles of I_{2} that combined with $3.83 \times 10^{-3} \mathrm{~mol} \mathrm{Sn}$. Mass of I_{2} used was 1.947 g .
$1.947 \mathrm{~g} \mathrm{I}_{2} \cdot \frac{1 \mathrm{~mol}}{253.81 \mathrm{~g}}=7.671 \times 10^{-3} \mathrm{~mol} \mathrm{l}_{2}$
How many mol of iodine atoms?

$=1.534 \times 10^{-2} \mathrm{~mol} \mathrm{I}$ atoms
© 2006 \qquad

Calculate Moles
$\cdot 0.369 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \cdot \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0205 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$\cdot 0.654 \mathrm{~g} \mathrm{CuSO}_{4} \cdot \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{159.6 \mathrm{~g} \mathrm{CuSO}_{4}}=0.00410 \mathrm{~mol} \mathrm{CuSO}_{4}$

\qquad
Tin and Iodine Compound
Now find the ratio of number of moles of moles of I and $S n$ that combined.

$$
\frac{1.534 \times 10^{-2} \mathrm{~mol} \mathrm{I}}{3.83 \times 10^{-3} \mathrm{~mol} \mathrm{Sn}}=\frac{4.01 \mathrm{~mol} \mathrm{I}}{1.00 \mathrm{~mol} \mathrm{Sn}}
$$

Empirical formula is SnI_{4}

Mass of anhydrous compound
Mass of water
20 -
ofland Sn that combined

Solution is just like for determining emiprical formulas (g to mol to mol ratio to simplest whole number ratio to formula)
\qquad

Determine Mole Ratios and Empirical Formula

- Find simplest whole number mole ratio
$0.0205 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$0.00410 \mathrm{CuSO}_{4} \quad 1 \mathrm{~mol} \mathrm{CuSO}_{4}$
- Write the empirical formula
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ copper sulfate pentahydrate

Chapter 3 - Molar Mass — Part 1

