Roadmap

- Calculate amounts of reactants and products using stoichiometry and molarity
- Titrate to equivalence point
- Recognize, classify, write, balance, and predict productfavored redox reactions

SOLUTION STOICHIOMETRY

- Zinc reacts with acids to produce H_{2} gas.
- Have 10.0 g of Zn
- What volume of 2.50 M HCl is needed to convert all the $\mathbf{Z n}$ to $\mathrm{H}_{\mathbf{2}}$?

©2006

What volume of 2.50 M HCl converts 10.0 g of Zn to H_{2} gas?

What volume of 2.50 M HCl converts 10.0 g of Zn to H_{2} gas?

Step 1: Write the balanced equation
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})-->\mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{\mathbf{2}}(\mathrm{g})$
Step 2: Calculate amount of $\mathbf{Z n}$

What volume of 2.50 M HCl converts $\mathbf{1 0 . 0 g}$ of Zn to $\mathrm{H}_{\mathbf{2}}$ gas?

Step 3: Use the stoichiometric factor
$0.153 \mathrm{~mol} \mathrm{Zn} \cdot \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Zn}}=0.306 \mathrm{~mol} \mathrm{HCl}$
Step 4: Calculate volume of HCl
$0.306 \mathrm{~mol} \mathrm{HCl} \cdot \frac{1.00 \mathrm{~L}}{2.50 \mathrm{~mol}}=0.122 \mathrm{~L} \mathrm{HCl}$

Titrations (cont d)

- In a titration, one reactant (the titrant) is placed in a buret. The other reactant is placed in a flask along with a few drops of an indicator.
- The titrant is slowly added to the contents of the flask until the indicator changes color (the endpoint).
- If the indicator has been chosen properly, the endpoint tells us when the reactants are present in stoichiometric proportion.
- A titration may be based on any of the previously discussed types of reactions ...

O 2005

What is the concentration of NaOH given that 1.065 g of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) requires 35.62 mL of NaOH to titrate to an equivalence point?

At equivalence point, moles $\mathrm{H}^{+}=$moles OH^{-} Indicator solution changes color

76.80 g of apple requires 34.56 mL of 0.663 M NaOH for titration. What is mass \% of malic acid?
Apples contain malic acid, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$. Titrate apples using standardized NaOH .

$$
\begin{array}{r}
\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \\
\mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell)
\end{array}
$$

76.80 g of apple requires 34.56 mL of 0.663 M NaOH for titration. What is mass \% of malic acid?

Step 3: Calculate mass of acid titrated. 0.0115 mol acid $\cdot \frac{134 \mathrm{~g}}{\mathrm{~mol}}=1.54 \mathrm{~g}$

Step 4: Calculate \% malic acid.

$$
\frac{1.54 \mathrm{~g}}{76.80 \mathrm{~g}} \cdot 100 \%=2.01 \%
$$

76.80 g of apple requires 34.56 mL	
of 0.663 M NaOH for titration.	
What is mass \% of malic acid?	
Step 3: Calculate mass of acid titrated.	
0.0115 mol acid $\cdot \frac{134 \mathrm{~g}}{\mathrm{~mol}}=1.54 \mathrm{~g}$	
Step 4: Calculate \% malic acid.	
$\frac{1.54 \mathrm{~g}}{76.80 \mathrm{~g}} \cdot 100 \%=2.01 \%$	

What is the concentration of the NaOH given that 1.065 g of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) requires 35.62 mL of NaOH for titration to an equivalence point?

Step 3: Calculate concentration of NaOH

$$
\frac{0.0236 \mathrm{~mol} \mathrm{NaOH}}{0.03562 \mathrm{~L}}=0.663 \mathrm{M}
$$

$$
\mathbf{M}_{\mathrm{NaOH}}=[\mathrm{NaOH}]=0.663 \mathrm{M}
$$

76.80 g of apple requires 34.56 mL of 0.663 M NaOH for titration. What is mass \% of malic acid?

Step 1: Calculate amount of NaOH used.
$C \cdot V=(0.663 \mathrm{M})(0.03456 \mathrm{~L})$

$$
=0.0229 \mathrm{~mol} \mathrm{NaOH}
$$

Step 2: Calculate amount of acid titrated.

$$
0.0229 \mathrm{~mol} \mathrm{NaOH} \cdot \frac{1 \mathrm{~mol} \mathrm{acid}}{2 \mathrm{~mol} \mathrm{NaOH}}
$$

$$
=0.0115 \mathrm{~mol} \text { acid }
$$

Redox Reactions Have Electron Transfer	
Transfer leads to- 1. Increase in oxidation number of some element $=$ OXIDATION 2. Decrease in oxidation number of some element $=$ REDUCTION	

Determine Oxidation Numbers

The electric charge an element APPEARS to have when electrons are counted by some arbitrary rules:

1. Each atom in free element has oxidation \# = 0 $\begin{array}{lllll}\mathrm{Zn} & \mathrm{O}_{2} & \mathrm{I}_{2} & \mathrm{~S}_{8} & \mathrm{C}_{60}\end{array}$
2. In simple ions, oxidation \# = charge on ion. -1 for $\mathrm{Cl}^{-} \quad+2$ for $\mathbf{M g}^{\mathbf{2 +}}$

02000

Balance a Redox Reaction

Corrosion of aluminum
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cu}^{2+}(\mathrm{aq})$--> $2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{s})$
$\mathrm{Al}(\mathrm{s})$--> $\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-}$

- Oxidation \# of Al increases as e- are lost by the metal.
- Therefore, Al is OXIDIZED
- Al is the REDUCING AGENT in this balanced halfreaction.

Balance a Redox Reaction

Corrosion of aluminum
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cu}^{2+}(\mathrm{aq})$--> $2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{s})$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{C} \mathbf{C u}(\mathrm{s})$

- Oxidation \# of Cu decreases as e- are gained.
- Therefore, Cu is REDUCED
- Cu is the OXIDIZING AGENT in this balanced halfreaction.

LEO goes GER

Examples of Redos Reostrions ${ }^{32}$
Metal + halogen $2 \mathrm{Al}+3 \mathrm{Br}_{2}--->\mathrm{Al}_{2} \mathrm{Br}_{6}$

Reaction Type	Oxidation	Reduction
In terms of oxygen	gain	loss
In terms of halogen	gain	loss
In terms of electrons	loss	gain
In terms of hydrogen	loss	gain

Balance Redox Reactions
$\mathrm{Cu}(\mathrm{s})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$

Balance Redox Reactions

Step 4: Multiply half-reactions by factors so that the electrons cancel.

$$
\begin{array}{ll}
\text { Reducing agent } & \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\
\text {Oxidizing agent } & 2 \mathrm{Ag}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}
\end{array}
$$

Step 5: Add half-reactions (and simplify) to give the overall equation:

$$
\mathrm{Cu}+2 \mathrm{Ag}^{+} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ag}
$$

The equation is balanced for both charge and mass.

Balance Redox Reactions

Step 1: Split the reaction into half-reactions, one for oxidation and the other for reduction.
$0 x$
$\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}$
Red
$\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}$

Step 2: Balance half reactions for mass in aqueous acicici solution, can add $\mathrm{H}_{2} \mathrm{O}$ to balance O and H to balance H). Already done in this case.
Step 3: Balance half-reactions for charge by adding electrons.

```
Ox
Cu }->\mp@subsup{\textrm{Cu}}{}{2+}+2\mp@subsup{\textrm{e}}{}{-
Red }\mp@subsup{\textrm{Ag}}{}{+}+\mp@subsup{\textrm{e}}{}{-}->\textrm{Ag
```


© 2006

Balance Redox Reactions

Balance the following in acid solution-

$$
\mathrm{VO}_{2}{ }^{+}+\mathrm{Zn} \rightarrow \mathrm{VO}^{2+}+\mathrm{Zn}^{2+}
$$

Step 1: Write the half-reactions
Ox $\quad \mathbf{Z n} \rightarrow \mathbf{Z n}^{2+}$
Red $\quad \mathrm{VO}_{2}{ }^{+} \rightarrow \mathrm{VO}^{2+}$
Step 2: Balance half-reactions for mass.
Ox $\quad \mathbf{Z n} \rightarrow \mathbf{Z n}^{\mathbf{2 +}}$
Red $\quad 2 \mathrm{H}^{+}+\mathrm{VO}_{2}{ }^{+} \rightarrow \mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}$

Add $\mathrm{H}_{2} \mathrm{O}$ on O -deficient side and add H^{+} on other side for H-balance.

Red $\quad \mathrm{e}^{-}+2 \mathrm{H}^{+}+\mathrm{VO}_{2}{ }^{+} \rightarrow \mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}$
Step 4: Multiply by a factor to cancel e^{-}.
Ox $\quad \mathbf{Z n} \rightarrow \mathbf{Z n}^{2+}+\mathbf{2 e}^{-}$
Red $\quad 2 \mathrm{e}^{-}+4 \mathrm{H}^{+}+2 \mathrm{VO}_{2}{ }^{+} \rightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
Step 5: Add balanced half-reactions
$\mathbf{Z n}+\mathbf{4} \mathbf{H}^{+}+\mathbf{2} \mathrm{VO}_{\mathbf{2}}{ }^{+} \rightarrow \mathrm{Zn}^{\mathbf{2 +}}+\mathbf{2} \mathrm{VO}^{2+}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

Balance Redox Reactions

Step 3: Balance half-reactions for charge.
Ox $\quad \mathbf{Z n} \rightarrow \mathbf{Z n}^{2+}+2 \mathbf{e}^{-}$

Tips to Balance Redox Rxns

- Never add $\mathrm{O}_{2}, \mathrm{O}$ atoms, or O^{2-} to balance oxygen.
- Never add H_{2} or H atoms to balance hydrogen.
- Be sure to write the correct charges on all the ions.
- Check your work at the end to make sure mass and charge are balanced.
- PRACTICE!

Balance Redox Rxns in Base

- Write half reactions
- Balance half reactions for mass $\left(\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}\right)$
- Balance half reactions for charge (e-)
- Multiply by an appropriate factor to cancel out electrons
- Add half reactions
- Add OH^{-}to each side to neutralize all H^{+} forming water
- Cancel out species that are the same on both sides
\square

