CHEMICAL REACTIONS

Reactants: $\mathbf{Z n}+\mathbf{I}_{\mathbf{2}}$
Product: $\mathrm{Zn} \mathrm{I}_{\mathbf{2}}$

Syllabus Learning Outcomes : 6, 8, and 10

Once you write a correct formula

- Don't change the subscripts

Be Sure to Know

- Charges for atoms and polyatomic ions
- How to write correct formulas
- Names for ionic and molecular compounds
- How to write a formula given a name

Write Compounds Between

- Lithium and Bromine \qquad
- Ammonium and Sulfur \qquad
- Potassium and Phosphate \qquad
- Calcium and Acetate \qquad
- Magnesium and Dichromate \qquad
- Strontium and Phosphate \qquad

Write Compounds Between

- Iron (III) and perchlorate \qquad
- Aluminum and oxygen \qquad
- Chromium (III) and phosphate \qquad
- Carbon and hydrogen \qquad
- Tin (IV) and carbonate \qquad
- Lead(IV) phosphate \qquad

Write Chemical Equations

Coefficients show relative amounts of reactants and products.
$4 \mathrm{Al}(\mathrm{s})+\mathbf{3} \mathrm{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
\bar{T} The numbers in the front are called
stoichiometric coefficients
The letters (s), (g), (I), and (aq) are the physical states of compounds.

Law of Coneervation of Matters

Chemical reactions have the same amount of matter on both sides.

$$
2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

Balanced Chemical Equations

Law of Conservation of Matter

A chemical equation must be balanced:
same number of atoms of the same kind on both sides.

Lavoisier, 1788

General Balancing Strategy

- First balance metals, if any
- Second, balance nonmetals other than hydrogen and oxygen
- If a polyatomic ion does not change from one side to the other, treat it as a group
- Third, balance oxygen
- Fourth, balance hydrogen
- Last, check it again!!!

15

Ionic compounds, acids

$$
\ldots \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots
$$ $\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow$ $\mathrm{CaCO}_{3}(\mathrm{~s})+$ \qquad $\mathrm{NaCl}(\mathrm{aq})$

\qquad $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ \qquad $\mathrm{NaOH}(\mathrm{aq}) \rightarrow$
\qquad $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Explain how to predict products and tracking

STOICHIOMETRY

Rests on Law of Conservation of Matter

$\underline{\mathbf{2}} \mathbf{A l (s)}+\underset{-\underset{\mathbf{3}}{ } \mathrm{Br}_{2}(\mathbf{l i q}) \rightarrow \mathrm{Al}_{2} \mathrm{Br}_{6}(\mathbf{s})}{\square \text { Recipe }}$ \square

If 1 mol of ammonium nitrate decomposes, how much $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ are formed?

- Step 1: Write the balance chemical reaction
- $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

	19
If 1 mol of ammonium nitrate decomposes, how much $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ are formed?	
- Step 2: Balanced reaction gives equivalence by moles when reactants convert completely to products - $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ - $1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$ reacted $=1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}$ formed, - $1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$ reacted $=2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ formed, and - $1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}$ formed $=2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ formed	

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
Step 3: Convert moles of reactant to moles of product

Stoichiometric Factors
$1 \mathrm{~mol} \mathrm{NH} \mathrm{NO}_{3}<-->2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}$ or $\frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}$

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
Step 3: Convert moles of reactant to moles of product

$$
5.68 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \cdot \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { produced }}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \text { used }}
$$

$$
=11.4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { produced }
$$

If 454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ decomposes, how much $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ are formed? What is the theoretical yield of products?

Step 1: Write balanced chemical equation $-\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\underset{2}{2} \mathrm{H}_{2} \mathrm{O}$
$454 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{80.04 \mathrm{~g}}=5.68 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$

Mass from lab balance \quad Count molecules

Q 2006

$$
454 \mathrm{~g} \text { of } \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

Step 4: Convert moles of product to grams
Called the THEORETICAL YIELD

ALWAVS FOLOW THESE STEPS IN SOLVING STOICHIOMETRY PROBLEMS!

Why These Steps?

- Atoms and molecules are too small to count out individually (unlike eggs for a recipe)
- In the lab, we determine the mass of a large number of atoms or molecules using a balance
- Figure out how many atoms or molecules we have using the mass per mole of atoms/molecules
- Apply stoichiometry (the recipe) from a balanced chemical reaction to figure how many atoms $/$ molecules we get
- Convert how many atoms/molecules back to a mass so we can measure how well we did using a balance

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$

$$
454 \mathrm{~g} \text { of } \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

Amounts Table - Used in Chem II
Step 5: How much $\mathrm{N}_{2} \mathrm{O}$ is formed?
Mass of reactants $=$ Mass of products
$454 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=$ \qquad $\mathrm{g} \mathrm{N}_{2} \mathrm{O}+204 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ mass of $\mathrm{N}_{2} \mathrm{O}=250 . \mathrm{g}$

- Compound $\quad \mathrm{NH}_{4} \mathrm{NO}_{3} \quad \mathrm{~N}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{O}$
- Before (g)
- Before (mol)
- Change (mol)
- After (mol)
- After (g)

Note that matter is conserved!

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$				31
Amounts Table - Used in Chem II				
- Compound	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$	
- Before (g)	454	0	0	
- Before (mol)	5.68	0	0	
- Change (mol)	-5.68	+5.68	+2(5.68)	
- After (mol)	0	5.68	11.4	
- After (g)	0	250	204	$=454 \mathrm{~g}$
Note that matter is conserved!				

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
Step 6: Calculate percent yield
If you isolated only 131 g of $\mathrm{N}_{2} \mathrm{O}$, what is the percent yield?
This compares the theoretical (250.g) and actual (131 g) yields.

$$
454 \mathrm{~g} \text { of } \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

Step 6: Calculate percent yield

Remember - Effort

- Study 9-12 hours weekly to keep up with the course material
- Work/rework the homework problems in the book and Chemistry Is Not A Spectator Sport
- Make study guides from lecture notes and worked problems to help learn concept material.

PROBLEM: Using 5.00 g of $\mathrm{H}_{2} \mathrm{O}_{2}$, what mass of O_{2} and of $\mathrm{H}_{2} \mathrm{O}$ can be obtained?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{liq})--->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Reaction is catalyzed by MnO_{2}
Step 1: moles of $\mathrm{H}_{2} \mathrm{O}_{2}$
Step 2: use STOICHIOMETRIC FACTOR to calculate moles of O_{2}
Step 3: mass of O_{2}

> PROBLEM: Using 5.00 g of $\mathrm{H}_{2} \mathrm{O}_{2}$, what mass of O_{2} and of $\mathrm{H}_{2} \mathrm{O}$ can be obtained?

Reactions Involving a LIMITING REACTANT

- In a given reaction, there is not enough of one reagent to use up the other reagent completely.
- The reagent in short supply LIMITS the quantity of product that can be formed.

Step 1 of LR problem: Calculate moles of each reactant

We have 5.40 g of Al and 8.10 g of Cl_{2}
$5.40 \mathrm{~g} \mathrm{Al} \cdot \frac{1 \mathrm{~mol}}{27.0 \mathrm{~g}}=0.200 \mathrm{~mol} \mathrm{Al}$
$8.10 \mathrm{~g} \mathrm{Cl}_{2} \cdot \frac{1 \mathrm{~mol}}{70.9 \mathrm{~g}}=0.114 \mathrm{~mol} \mathrm{Cl}_{2}$
$\mathrm{LR}=$ limiting reactant or limiting reagent

PROBLEM: Mix 5.40 g of Al with 8.10 g of Cl_{2}. What mass of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ can form?

Method 1: Find mole ratio of reactants

Step 1 of LR problem: compare actual mole ratio of reactants to theoretical mole ratio.

$$
2 \mathrm{Al}+3 \mathrm{Cl}_{2}--->\mathrm{Al}_{2} \mathrm{Cl}_{6}
$$

Reactants must be in the mole ratio

$$
\frac{\mathrm{mol} \mathrm{Cl}_{2}}{\mathrm{~mol} \mathrm{Al}}=\frac{3}{2}
$$

There is not enough Al to use up all the Cl_{2}
Lim reag = Al

Q2006 \qquad

Method 1: Find mole ratio of reactants

$2 \mathrm{Al}+3 \mathrm{Cl}_{2}$---> $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ $\mathrm{mol} \mathrm{Cl}_{2}$ mol AI

$$
\begin{aligned}
& =\frac{0.114 \mathrm{~mol}}{0.200 \mathrm{~mol}}=0.57 \\
& \begin{array}{l}
\text { This } \\
\text { should be } 3 / 2 \text { or } 1.511 \text { if } \\
\text { reactants are present in the } \\
\text { exact stoichiometric ratio. }
\end{array} \\
& \text { Limiting reactant is } \mathrm{Cl}_{2}
\end{aligned}
$$

 Reactants
$2 \mathrm{Al}+3 \mathrm{Cl}_{2}$--> $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
If $\frac{\mathrm{mol} \mathrm{Cl}_{2}}{\mathrm{~mol} \mathrm{Al}}<\frac{3}{2}$
There is not enough Cl_{2} to use up all the AI
Lim reag $=\mathrm{Cl}_{2}$

Q2006

Method 3: Calculate how much of the other reactant you need
 $$
2 \mathrm{Al}+3 \mathrm{Cl}_{2}-\ldots \mathrm{Al}_{2} \mathrm{Cl}_{6}
$$

Have 0.200 mol Al and $0.114 \mathrm{~mol} \mathrm{Cl}_{2}$
$0.200 \mathrm{~mol} \mathrm{Al} * \frac{3 \mathrm{~mol} \mathrm{Cl}_{2}}{2 \mathrm{~mol} \mathrm{Al}}=0.3 \mathrm{~mol} \mathrm{Cl}_{2}$ needed
Only have $0.114 \mathrm{~mol} \mathrm{Cl}_{2}$, need 0.3 mol , so

Limiting reactant is Cl_{2}

CALCULATIONS: calculate mass of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ expected.

Step 1: Calculate moles of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ using LR.
$0.114 \mathrm{~mol} \mathrm{Cl}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{Cl}_{6}}{3 \mathrm{~mol} \mathrm{Cl}_{2}}=0.0380 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{Cl}_{6}$

Step 2: Calculate mass of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ using LR.

How much of reactants will remain when reaction is complete?

- Cl_{2} was the LR. Therefore, excess Al was present. But how much?
- First find the Al that was used.
- Then find the Al that remains.
© 2006

Chemical Analysis

1) Balance the Chemical Reaction
$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq})-->2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{BaSO}_{4}(\mathrm{~s})$
2) Calculate moles of BaSO_{4} formed
$0.177 \mathrm{~g} \mathrm{BaSO}_{4} \bullet \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{233.4 \mathrm{~g} \mathrm{BaSO}}=7.58 \times 10^{-4} \mathrm{~mol} \mathrm{BaSO}_{4}$
3) Calculate moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the mineral $7.58 \times 10^{-4} \mathrm{~mol} \mathrm{BaSO}_{4} \bullet \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{BaSO}_{4}}=7.58 \times 10^{-4} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$

Calculating Excess AI

$0.114 \mathrm{~mol} \mathrm{Cl}_{2} \cdot \frac{2 \mathrm{~mol} \mathrm{Al}^{3 \mathrm{~mol} \mathrm{Cl}_{2}}}{}=0.0760 \mathrm{~mol} \mathrm{Al}$ used
Excess AI = AI available - AI used
$=0.200 \mathrm{~mol}-0.0760 \mathrm{~mol}$
$=0.124 \mathrm{~mol} \mathrm{Al}$ in excess

02006

Chemical Analysis

- An impure sample of the mineral thenardite contains $\mathrm{Na}_{2} \mathrm{SO}_{4}$
- Mass of mineral sample $=0.123 \mathrm{~g}$
- The $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample is converted to insoluble BaSO_{4}.
- The mass of BaSO_{4} is 0.177 g
- What is the mass percent of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the mineral?

0200
2006

Chemical Analysis

4) Calculate the mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in sample
$7.58 \times 10^{-4} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \bullet \frac{142.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=0.108 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$
5) Calculate the percent by mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample, the percent purity.
$\% \mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{0.108 g \mathrm{Na}_{2} \mathrm{SO}_{4}}{0.123 g \text { sample }} \bullet 100 \%=87.8 \%$ pure $\mathrm{Na}_{2} \mathrm{SO}_{4}$
© 2006

Determine Empirical Formula by Combustion

Burn 0.115 g of a hydrocarbon, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$, and produce 0.379 g of CO_{2} and 0.1035 g of $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+$ some oxygen \rightarrow

$$
0.379 \mathrm{~g} \mathrm{CO}_{2}+0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

What is the empirical formula of $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$?

Empirical Formula by Combustion

$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+$ some oxygen $\rightarrow 0.379 \mathrm{~g} \mathrm{CO}_{2}+0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
First, note that all C goes to CO_{2} and all H goes to $\mathrm{H}_{2} \mathrm{O}$.

Empirical Formula by Combustion
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+$ some oxygen $\rightarrow 0.379 \mathrm{~g} \mathrm{CO}_{2}+0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
3) Find ratio of $\mathrm{molh} H / \mathrm{mol} \mathrm{C}$ to get x and y in $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$.
$1.149 \times 10^{-2} \mathrm{~mol} \mathrm{H} / 8.61 \times 10^{-3} \mathrm{~mol} \mathrm{C}$
1.33 mol H and $1.00 \mathrm{~mol} \mathrm{C} \mathrm{\quad Multiply} \mathrm{by} 3 / 3$

4 mol H and 3 mol C
Empirical formula is $\mathrm{C}_{3} \mathrm{H}_{4}$

Empirical Formula by Combustion
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+$ some oxygen $\rightarrow 0.379 \mathrm{~g} \mathrm{CO}_{2}+0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

1. Calculate amount of C in $\mathrm{CO}_{2} 1 \mathrm{~mol} \mathrm{C}$ for $1 \mathrm{~mol} \mathrm{CO}_{2}$ $8.61 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}-->8.61 \times 10^{-3} \mathrm{~mol} \mathrm{C}$
2. Calculate amount of $\mathrm{H}^{2} \mathrm{H}_{2} \mathrm{O} 2 \mathrm{~mol} \mathrm{H}$ for $1 \mathrm{~mol}_{\mathrm{H}_{2} \mathrm{O}}$
$5.744 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \rightarrow 1.149 \times 10^{-2} \mathrm{~mol} \mathrm{H}$

