Net lonic Equations Roadmap

Being able to classify the reaction type is the key to writing the net ionic equation.
Reaction Types (Watch for this):

- Precipitation (ions and solubility)
- Acid-Base (ions and water\# form)
- Gas Forming (gas forms)
- Redox (oxidation numbers change) Net ionic equations show key chemistry

Syllabus Learning Outcomes : 8, 9, and 10
39

Soluble salts form aqueous ions when dissolved in water

Ions Conduct Electricity

Solutions with ions are called ELECTROLYTES
$\mathrm{HCl}, \mathrm{NaOH}, \mathrm{CuCl}_{2}$, and NaCl are strong
electrolytes. They
dissociate completely (or nearly so) into ions.

```
* Dissociated ions form in solution
    that conduct electricity. Water and
    solid salt do not conduct electricity.
```


Aqueous Solutions

$\mathrm{HCl}, \mathrm{CuCl}_{2}$, and NaCl are strong electrolytes. They dissociate completely (or nearly so) into ions.

* Form ions in solution

Aqueous Solutions

Acetic acid ionizes only to a small extent, so it is a weak electrolyte.
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \ldots \mathrm{CH}_{3} \mathrm{CO}_{2} \cdot(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$

Memorize the 6 Strong Acids ${ }^{15}$		
HCl	hydrochloric acid HBr	hydrobromic acid HI
$\mathrm{H}_{2} \mathrm{SO}_{4}$	hydroiodic acid HClO_{4}	sulfuric acid HNO_{3}

Writing Net Ionic Equations

- Write the total ionic equation by dissociating species that form ions (Keep solids, liquids, gases, weak acids, and weak bases together as molecules)
- Cancel ions (spectator ions) if they are the same on both sides of a reaction to give the net ionic equation.

Example Net Ionic Equation

$\mathrm{Mg}(\mathrm{s})+\mathbf{2 H C l}(\mathrm{aq}) \rightarrow \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathrm{MgCl}_{\mathbf{2}}(\mathrm{aq})$
Step 1) Dissociate into ions (total ionic equation)
$\mathbf{M g}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathbf{M g}^{2+}(\mathrm{aq})+2 \mathrm{Cl}(\mathrm{aq})$
Step 2) Cancel spectator ions (net ionic equation)
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathrm{Mg}^{2+}(\mathrm{aq})$
Cl^{-}ions are SPECTATOR IONS
Could have used another anion, $\mathrm{NO}_{3}{ }^{-}$.
© 2006

Net Ionic Equations

$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$

$$
\cdots \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})
$$

$\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$

$$
\ldots \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})
$$

We leave the spectator ions out -
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \xrightarrow{--->} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Mg}^{2+}(\mathrm{aq})$
to give the NET IONIC EQUATION
Note that gases $\left(\mathrm{H}_{2}\right)$ and metals $\mathrm{Mg}(\mathrm{s})$ are not ions

Recognize Acid-Base Reactions

Driving force is forming water
Net ionic equation
$\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}($ ($)$

This net ionic equation applies to STRONG acids and STRONG bases because weak acids and weak bases stay as molecules.

02006 \qquad

- Also called Neutralizations
- Other product of Acid-Base reaction is a Salt, MX.
$\mathrm{HX}+\mathrm{MOH} \rightarrow \mathrm{MX}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{M}^{\mathrm{n}+}$ comes from base \& $\mathrm{X}^{\mathrm{n}-}$ comes from acid
This is one way to make compounds!

Gas-Forming Reactions

This is primarily the chemistry of metal carbonates $\left(\mathrm{MCO}_{3}\right)$.
CO_{2} and water ---> $\mathrm{H}_{2} \mathrm{CO}_{3}$
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ca}^{2+}$--->
$2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s})$ (limestone)
Adding acid reverses this reaction.
$\mathrm{MCO}_{3}+$ acid $-->\mathrm{CO}_{2}(\mathrm{~g})+$ salt

34 $+$

Ions - Review for Net lonic Equations

- Soluble ionic compounds provide lots of ions in solution
- Acids provide H^{+}ions in solution.

Strong acids provide lots of ions in solution $(\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$,
$\left.\mathrm{HNO}_{3}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$
Weak acids provide few ions $\left(\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \ldots\right)$.

- Bases provide OH- ions in solution. Strong bases provide lots of ions in solution (LiOH,
$\mathrm{NaOH}, \mathrm{KOH}$) Weak bases provide few ions in solution $\left(\mathrm{NH}_{3}, \mathrm{Ca}(\mathrm{OH})_{2}\right)$ Some soluble compounds like sugar, ethanol, ethylene glycol provide no ions in solution

Classifying Reactions

Precipitation Reaction
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{BaSO}_{4}(\mathrm{~s})$

Net lonic Equation
$\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s}) \quad \mathrm{Al}^{3+}$ and $\mathrm{NO}_{3}{ }^{-}$are spectator ions

Gas Forming
$\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Net lonic Equation
$\mathrm{Fe}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Cl^{-}is spectator ion
©2006

Classifying Reactions

Strong Acid / Strong Base
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Net lonic Equation $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ K^{+}and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions

Strong acid / Weak Base
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \quad \mathrm{Cl}^{-}$is spectator ion
Net Ionic Equation
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$

Classifying Reactions

Weak acid / Strong Base
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Net Ionic Equation
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Na^{+}is spectator ion

Molarity Calculation

Determine Concentrations of
Ions in a $0.30 \mathrm{M} \mathrm{CuCl} \mathrm{Cl}_{2}$ Solution

PROBLEM: You have 50.0 mL of 3.0 M NaOH and you want 0.50 M NaOH . What do you do?
Add water to the 3.0 M solution to lower its concentration to 0.50 M
Dilute the solution!

PROBLEM: You have 50.0 mL of 3.0 M NaOH and you want 0.50 M NaOH . What do you do?

How much water is added? What is the final volume?

The important point is that --->
moles of NaOH in ORIGINAL solution = moles of NaOH in FINAL solution

