

Acids		Bases	
Binary Hydrogen Compounds	Oxoacids	Group 1A hydroxides	Group 2A hydroxides
HCl	HNO ₃	LiOH	Mg(OH) ₂
HBr	H ₂ SO ₄ ^a	NaOH	Ca(OH)2
HI	HClO ₄	KOH	Sr(OH) ₂
		RbOH CsOH	Ba(OH) ₂
SO ₄ is a strong acid in its Know the stro	first ionization step but v Copyright © 2004 Pear	veak in its second ionization son Prentice Hall, Inc. ses! Less Common	Less Soluble

25

- Write the <u>total ionic equation</u> by dissociating species that form ions (Keep solids, liquids, gases, weak acids, and weak bases together as molecules)
- Cancel ions (spectator ions) if they are the same on both sides of a reaction to give the <u>net ionic</u> equation.

$\begin{array}{c} \label{eq:spectral_states} & \end{tabular} \\ \hline \textbf{Example Net Ionic Equation} \\ \hline \textbf{Mg(s) + 2HCI(aq)} \rightarrow H_2(g) + MgCI_2(aq) \\ \hline \textbf{Mg(s) + 2H^+(aq) + 2CI^-(aq)} \rightarrow H_2(g) + Mg^{2+}(aq) + 2CI^-(aq) \\ \hline \textbf{Mg(s) + 2H^+(aq) + 2CI^-(aq)} \rightarrow H_2(g) + Mg^{2+}(aq) + 2CI^-(aq) \\ \hline \textbf{Step 2) Cancel spectator ions (net ionic equation)} \\ \hline \textbf{Mg(s) + 2H^+(aq) \rightarrow H_2(g) + Mg^{2+}(aq)} \\ \hline \textbf{CI^- ions are SPECTATOR IONS} \\ \hline \textbf{Could have used another anion, NO_3^-.} \end{array}$

Types of Reactions

30

- Acid-Base or Neutralization
- Precipitation
- Gas forming
- (Redox)
- No reaction

Ions – Review for Net Ionic Equations

- Soluble ionic compounds provide lots of ions in solution
- Acids provide H* ions in solution. - Strong acids provide lots of ions in solution (HCI, HBr, HI, HNO₃, HCIO₄, H₂SO₄) - Weak acids provide few ions (H₃PO₄, H₂CO₃, ...).
- Bases provide OH⁻ ions in solution.
 Strong bases provide lots of ions in solution (LIOH, NaOH, KOH)
 Weak bases provide few ions in solution (NH_a, Ca(OH)_b)
- Some soluble compounds like sugar, ethanol, ethylene glycol provide no ions in solution

