

Barometers Measure Pressure

IDEAL GAS LAW
$P V=n R T$

- Other gas laws can be derived from the Ideal Gas Law.
- Gas law problems may have 1 or 2 sets of conditions.

10 IDEAL GAS LAW

- 1 atm
$=760 \mathrm{~mm} \mathrm{Hg}$ column
= 29.9 inches Hg
$=$ about 34 feet of water

SI unit is PASCAL, Pa , where $1 \mathrm{~atm}=101.325 \mathrm{kPa}$

Boyle's Law

When n and T are constant
$P V=(n R T)=k$
$P \propto 1 / V$
Means if $\mathbf{P} \uparrow$ then $\mathbf{V} \downarrow$
Doubling V halves P

Robert Boyle

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Balloons in liquid $\mathbf{N}_{2}\left(-196^{\circ} \mathrm{C}\right)$ shrink.

Avogadro's Hypothesis

When T and P are constant
$\mathbf{V}=\mathbf{n}(\mathrm{RT} / \mathrm{P})=\mathbf{k n}$
Means if $\mathrm{V} \uparrow$, then $\mathrm{n} \uparrow$
Doubling n doubles V
$\frac{\mathrm{V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}$

Standard Volume

$\mathrm{V}=\mathbf{2 2 . 4} \mathrm{L}$ for 1 mol of an ideal gas at standard pressure and temperature (STP)

- T = 273 K
- $P=1.00$ atm

Using PV = nRT

How much N_{2} is req' d to fill a small room with a volume of 960 cubic feet ($27,000 \mathrm{~L}$) to $\mathrm{P}=745 \mathrm{~mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$?
$R=0.082057$ L•atm/K•mol $\longleftarrow \quad \begin{aligned} & \text { Note } \\ & \text { units }\end{aligned}$
Solution

1. Get all data into proper units (for R)

$$
\begin{aligned}
\mathrm{V} & =27,000 \mathrm{~L} \\
\mathrm{~T} & =25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \\
\mathrm{P} & =745 \mathrm{~mm} \mathrm{Hg}(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg}) \\
& =0.98 \mathrm{~atm}
\end{aligned}
$$

Using PV = nRT

How much \mathbf{N}_{2} is req' d to fill a small room with a volume of 960 cubic feet $(27,000 \mathrm{~L}$) to $\mathrm{P}=745 \mathrm{~mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$?
2. Now calc. $\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
$\mathrm{n}=\frac{(0.98 \mathrm{~atm})\left(2.7 \times 10^{4} \mathrm{~L}\right)}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol})(298 \mathrm{~K})}$
$\mathrm{n}=1.1 \times 10^{3} \mathrm{~mol}$ (or about 30 kg of gas)

What is the final volume of tea?

- Liquids \& solids do not obey gas laws

Gases with Stoichiometry
$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) $-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?

Bombardier beetle uses decomposition of hydrogen peroxide to defend itself.

Gases with Stoichiometry
$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) ---> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?

Solution

Strategy:
Calculate moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ and then
moles of O_{2} and $\mathrm{H}_{2} \mathrm{O}$.
Finally, calc. P from n, R, T, and V.
Gases with Stoichiometry
$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) ---> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?
Solution
$1.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol}}{34.0 \mathrm{~g}}=0.032 \mathrm{~mol}$
$0.032 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}=0.016 \mathrm{~mol} \mathrm{O}_{2}$

Gases with Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) ---> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}$ (g)
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?
Solution
P of $\mathrm{O}_{2}=\mathrm{nRT} / \mathrm{V}$
$=\frac{(0.016 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol})(298 \mathrm{~K})}{2.50 \mathrm{~L}}$
P of $\mathrm{O}_{2}=0.16 \mathrm{~atm}$

USING GAS DENSITY

The density of air at $15^{\circ} \mathrm{C}$ and 1.00 atm is $1.23 \mathrm{~g} /$
L . What is the molar mass of air given $\mathrm{v}=1.00 \mathrm{~L}$?

1. Calc. moles of air.

$\mathrm{n}=\mathrm{PV} / \mathrm{RT}=0.0423 \mathrm{~mol}$
2. Galc. molar mass $\mathrm{m}=\mathrm{d} * \mathrm{~V}$ mass $/ \mathrm{mol}=1.23 \mathrm{~g} / 0.0423 \mathrm{~mol}=29.1 \mathrm{~g} / \mathrm{mol}$

KINETIC MOLECULAR THEORY
 (KMT)

KMT explains gas laws. The KMT assumptions are:

- Gases consist of molecules in constant, random motion.
- Pressure arises from collisions with container walls.
- No attractive or repulsive forces between molecules. Collisions are elastic.
- Volume of molecules is negligible.

Kinetic Molecular Theory

Molecules in motion have kinetic energy:
$K E=(1 / 2)($ mass $)(\text { speed })^{2}$

At the same T, all gases have the same average KE.

As T goes up for a gas, KE also increases - and so does speed.

Kinetic Molecular Theory

At the same T, all gases have the same average KE .
As T goes up, KE also increases - and so

Kinetic Molecular Theory

Maxwell's equation

- Means if $\mathbf{T} \uparrow$, then $\mathbf{u} \uparrow$
- Means if molar mass (M) $\uparrow, \mathbf{u} \downarrow$

GAS EFFUSION

Molecules effuse out of a balloon at a rate (moles/second) proportional to their speed:

- Effusion \uparrow as $\mathbf{T} \uparrow$
- Effusion \uparrow as $M \downarrow$

Helium ($M=4$) effuses faster than $O_{2}(M=16)$ at the same T.

$\frac{\text { Rate for } A}{\text { Rate for } B}=\sqrt{\frac{M \text { of } B}{M \text { of } A}}$
Rate of effusion is
inversely proportional to (molar mass) ${ }^{1 / 2}$.

46
GAS EFFUSION

EFFUSION is the movement of gas molecules through a small hole into an empty container.

Porous barrier
44

Kinetic Molecular Theory

49

Molecules in motion have kinetic energy:
$K E=(1 / 2)($ mass $)(\text { speed })^{2}$

At the same T , all gases have the same average KE.

As T goes up for a gas, KE also increases - and so does speed.

Kinetic Molecular Theory
Maxwell's equation

root mean square speed

- Means if $\mathbf{T} \uparrow$, then $\mathbf{u} \uparrow$
- Means if molar mass (M) $\uparrow, \mathbf{u} \downarrow$

53
Boyle's Law from KMT
\rightarrow

$P \propto 1 / V$
n and T constant

Real Gases Deviate from the Ideal Gas Law

- Real molecules have volume and have
intermolecular forces.
- Otherwise gases could not become liquids.

High pressure and low temperature cause deviations

Chapter 12 - Part 1

Equation from Van Der Waals

Cl_{2} gas has $\mathrm{a}=6.49, \mathrm{~b}=0.0562$
For $8.0 \mathrm{~mol} \mathrm{Cl}_{2}$ in a 4.0 L tank at $27^{\circ} \mathrm{C}$.
P (ideal) $=n R T / V=49.3 \mathrm{~atm}$
P (van der Waals) = 29.5 atm

