Chapter 7 — Atoms — Part 1

Electromagnetic Radiation

* Most subatomic particles behave as
PARTICLES and obey the physics of

waves.
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Wave motion: wave length and nodes
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' El ic Radiati
Electromagnetic Radiation ectromagnetic Radiation
Long wavelength --> low frequency
* Waves have a frequency Short wavelength --> high frequency
« Use Greek letter “nu”, 'V, for frequency, and 0om
units are “cycles per sec” or hertz e
. Allradiation: A-V = C —_— V\/\/\/\/\/\/ €
- ¢ = velocity of light = 3.00 x 108 m/sec YWV VYV
« Long wavelength --> low frequency .w = "
» Short wavelength --> high frequency wisibte
increasing """ increasing
frequency wavelength
9 10
Elect tic Radiati Electromagnetic Radiation
& & h | h
Red light has ) = 700 N R Short wavelength -->
nm. Calculate the L . high frequency
frequency. % g ¢ high energy
9 =2 g3
1x107° m . 57 ° s
b [ BT 7.00x107 m £3-  -2% Long wavelength -->
glg low frequency
3 3 low energy
| 108 3 4
Freq = 220X 107 M8 _ ) o9 j01s!
7.00x 10"'m
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Max Planck (1858-1947)
Solved the “ultraviolet
catastrophe”
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Quantization of Energy

In the UV,
intensity drops

Intensity of Emitted Light ——»
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Quantization of Energy

[/

An object can gain or lose energy by absorbing
or emitting radiant energy in QUANTA.

Energy of radiation is proportional to

frequency
E. =hev

h = Planck’ s constant = 6.6262 x 10-34 Jes
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Light with long A (low V) has a low E.

Light with a short A (high v) has a high E.
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Photoelectric Effect 10

Experiment demonstrates the particle nature of light.
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Photoelectric Effect

Classical theory said that
E of ejected electron
should increase with
increase in light
intensity—not
observed!

* No e- observed until o
light of a certain ﬁé‘;;ﬁsl‘;;)
minimum E is used.

* Number of e ejected
depends on light
intensity.
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Photoelectric Effect

Understand experimental
observations if light consists of

particles called PHOTONS of

discrete energy.

PROBLEM: Calculate the energy of 1.00 mol
of photons of red light.

A= 700.nm

v = 4.29 x 104 sec’!
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Energy of Radiation

Energy of 1.00 mol of photons of red light.
E = hev
(6.63 x 1034 Jes)(4.29 x 104 s")
2.85 x 101° J per photon
E per mol =
(2.85 x 101 J/ph)(6.02 x 1023 ph/mol)
= 171.6 kJ/mol

This is in the range of energies that can
break bonds.
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Explain QT
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Excited Atoms
& Atomic Structure
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Avemic Line Emission
Specira and Niels Soly

Bohr’ s greatest contribution
to science was in building a
simple model of the atom. It
was based on an
understanding of the
SHARP LINE EMISSION

: 4 SPECTRA of excited
Niels Bohr atoms.
(1885-1962)
B <
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Spectrum of White Light

White light
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» Excited atoms emit light of only
certain wavelengths

» The wavelengths of emitted light
depend on the element.

[£] Focusing Detector
slits

A -

|
Light Prism »i“
source
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Spectrum of
Excited Hydrogen Gas
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Line Emission Spectra
of Excited Atoms

Atomic Line Spectrum of Excited H Atoms
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Visible lines in H atom spectrum are
called the BALMER series.

For H, electron transitions n=? to n=2 are in visible A
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Alnm)
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Line Spectra of Other Elements
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+ Excited atoms can emit light.

* Here the solution in a pickle is excited
electrically. The Na* ions in the pickle
juice give off light characteristic of that
element.
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Atomic Spectra and Bohr

One view of atomic structure in early 20th
century was that an electron (e-) traveled
about the nucleus in an orbit.

4__,Ele(_:tron
orbit

Any orbit should be possible
and so is any energy.

1.
2. But a charged particle
moving in an electric field should

emit energy.
End result should be destruction!
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Atomic Spectra and Bohr

Bohr said classical view is wrong.

Need a new theory — now called
QUANTUM or WAVE MECHANICS.

e- can only exist in certain discrete orbits
— called stationary states.

e- is restricted to QUANTIZED energy
states.

Energy of state = - C/n2

where n = quantum no. =1, 2, 3, 4, ....
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Atomic Spectra and Bohr
Energy of quantized state = - B/n?

* Only orbits where n = integral
no. are permitted.

» Radius of allowed orbitals

=n2¢(0.0529 nm)

* But note — same eqns. come
from modern wave mechanics
approach.

* Results can be used to explain
atomic spectra of hydrogen.
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Atomic Spectra and Bohr Energy Absorption/Emission
If e-’ s are in quantized — —
energy states, then il s
AE of states can =3 "= AN\~
have only certain = =2 Af- 1984l Ar- o8l
values. This explain g 5 Eed
sharp line spectra. & e’\. . o " 5
C n=2 Ground state Excited state Ground state
E = — 22 @ —nucleus
8
C
E =— -5 n=1 .
1 P C = Rhc = 1312kj/mol
. 33 . 5 n=2 34
Atomic Spectra and Bohr Atomic |, [E=C0/29) ——e—0
[C]
Spectra |
_ . 2 n=2 Zz _
. E=-C(1/22) D=cq andBohr |&| . ., n-i
; AE = ~(3/4)C E=hv
1l E=-c(1/12) W= 1 C has been found from experiment (and is now
Calculate AE for e- “falling” from high energy level called R, the Rydberg constant)
(n = 2) to low energy level (n = 1). R (= C) = 1312 kJ/mol or 3.29 x 10'® cycles/sec
AE = Eqng - Eqgat = CI(1112) - (1122)] 39, E of emitted light
AE = -(314)C = (3/4)R = 2.47 x 10" sec™!
andA = civ = 121.6 nm
Note that the process is EXOTHERMIC L . . .
This is exactly in agreement with experiment!
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Origin of Line Spectra

n Energy I/atom Lyman series Balmer series
o o0

- =1
§ —6:06 X 10

. 20
§ =872 10

_ 10
4 Z136x10

n
1875 nm

. 10
3 Z242 %10

410.2 nm
4361 om
486,

656.3 nm

. 10
=545 X 10

16
1 =218 10
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Atomic Line Spectra and
Niels Bohr

Bohr’ s theory was a great
accomplishment.

Rec’ d Nobel Prize, 1922

Problems with theory —

* theory only successful for H.

* introduced quantum idea
artificially.

* So, we go on to QUANTUM or
WAVE MECHANICS

Niels Bohr
(1885-1962)
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Quantum or Wave Mechanics

A de Broglie (1924) proposed
: , thatall moving objects
W . have wave properties.

For light: E = m¢?
E=hv=hc/A

L. de Broglie Therefore, . =h/mc

(1892-1987) and for particles, A=h/mv
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Quantum or Wave Mechanics

Metal foil

Electron gun / 115g baseball
(0.115kg) at 100
mph

A=13x103%cm

e- with velocity =
Experimental proof of wave 1.9 x 108 cm/sec
properties of electrons

A =0.388 nm
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Qu@mrmm or Wave Mechanics
Schrodinger applied idea of e-
behaving as a wave to the
problem of electrons in atoms.
He developed the WAVE
EQUATION
Solution gives set of math
expressions called WAVE
E. Schrodinger FUNCTIONS, W
1887-1961
Each describes an allowed energy
state of an e-
Quantization introduced naturally.
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WAVE FUNCTIONS, ¥

* ¥ js a function of distance and two
angles (n, .2, m)).

- Each W corresponds to an ORBITAL
— the region of space within which an
electron is found.

* W does NOT describe the exact
location of the electron.

* WP2js proportional to the probability of
finding an e at a given point.
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Uncertainty Principle

Problem of defining nature
of electrons in atoms
solved by W. Heisenberg.

Cannot simultaneously

define the position and
momentum (= m-v) of an

electron.
. We define e” energy exactly
W.H b v
1901?1'3‘;2 *9  put accept limitation that
we do not know exact
position.
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Orbitals 2

* No more than 2 e- assigned to an
orbital

« Orbitals grouped in s, p, d (and f)
subshells

.!orbitals i
P orbitals

SAENNENENENEEN
Lt P L] ]
SENEENENENEEEEEN
AEEER

©2008




Chapter

7 — Atoms — Part 1

8
43 44
~ Sorbitals «p orbitals Supsnzlls 4 Snzlls
AEEEEEEEEEEEN
o N ndiorbitals W W = .
AEEEEEEEEE NN * Subshells grouped in shells.
..._.. - - * Each shell has a number called
s orbitals p orbitals d orbitals the PRINCIPAL QUANTUM
# NUMBER
orbitals 1 3 5 B . ’_ n
* The principal quantum number
of the shell is the number of the
#e- 2 6 10 period or row of the periodic
table where that shell begins.
45 46
QUANTUY BER:
Subshells & Shells QUANTUR NUSECRS
The shape, size, and energy of each orbital is a
function of 3 quantum numbers:
n=2—0N N (major) --> shell (1,2,3,4,5,6,7,...)
- +il5 i £ (angular) > subshell (sh
=3 — subshell (shape)
n=3 N NNNNENRE {angular)
n=4- HHNNRENNERNNAEN
OOaanonEanEnEaEAanna M, (magnetic) ---> designates an orbital
[elefafals] within a subshell

©2006

(orientation)
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£ gives shape of

orbital
B
s orbital p orbital d orbital
£=0 £=1 £=2
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QUANTUM NUMBERS

Symbol Allowed values Description
n (major) 253 Orbital size
and energy

where E = -B/n?)

£ (angular) 0,1,2,..n1 Orbital shape
or type
(subshell)

m, (magnetic) -£..0..+¢ Orbital
orientation
# of orbitals in subshell=2 2+ 1

©2008
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Shells and Subshells |
‘ﬁ#% Types of Whenn=1,then £=0and m,=0 ,
x y - N .
3, 3, %, ATOI’I’\IC Therefore, in n =1, there is 1 type of ‘
¥ Orbital subshell ‘
# ;# ;+i >#< roitais and that subshell has a single orbital
F . s i (m, has a single value ---> 1 orbital)
Z’Z This subshell is labeled S (“ess”)
| Each shell has 1 orbital labeled s,
F 7y * $ % ‘ ” and it is SPHERICAL in shape.
. b : i
. . 51 52
s Orbitals— Always Spherical 1s Orbital
E% Most probable distance. 3—: =5== ==§==
B [\t z zEz
i
e e E
Dot picture of  Surface Surface of. Pk
electron cloud  density 90% -
in 1s orbital. amry versus p!?_"):lb]ﬂ'..“_‘/ e
distance SPHETE; 8
I=0 is an s orbital
53 54
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Dot Picture
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%) Orbitals Typical p orbital p Orbitals
When n =2, then £=0and 1 % ) | yznodsl plane xz nodal plane xy nodal plane
Therefore, in n = 2 shell there .
are 2 types of orbitals — 2
subshells '
For 2=0 m,=0 planar node
this is an s subshell (2s) When | = 1, there is ) v Yo
Fors=1 m,=-1,0,+1 a PLANAR
this is a p subshell (2p) ':ch tshr“ the B g "
with 3 orbitals ucleus. - .
The three p orbitals lie 90° apart in space
Li|Be|BJ|Cc|N|OJF]
57 58
. . d Orbitals
2p, Orbital 3p, Orbital
I III I T III I When n = 3, what are the values of £?
3s 3p 3d 3s 3p 3d
A ot £=0,1,2
v i and so there are 3 subshells in the shell.
For.£=0,m,=0
---> s subshell with single orbital
@ £ Fort=1,m,=-1,0, +1
i & ---> p subshell with 3 orbitals
Fort=2,m, = -2,-1,0, +1, +2
B B —> d subshell with 5 orbitals
59 60

typical d orbital

d Orbitals

s orbitals have no planar
node (I = 0) and so are
spherical.

p orbitals have | =1, and
have 1 planar node,

and so are “dumbbell”
shaped.

This means d orbitals (with | -
I = 2) have 2 planar
nodes 4

planar node

“planar node

yz nodal plane xz nodal plane
z
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3d,, Orbital
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3d,, Orbital 3d.. Orbital
yz
I Iz zzzzz I Izzzazzz
z == z ==
9
9
g = : g B :
Dot Picture Dot Picture
2 2 s 8 . 64
3d,2 2 Orbital 3d,? Orbital
T EE EEREs Z Iz Iz
- — 3s 3p 3
2s 2p - . —
- 2s 2p
1s -
1s
T P
{ 4 >
8 e e z
Dot Picture B
Dot Picture
o 65 66
f Orbitals
Whenn=4,.2=0,1,2,3 so there are 4 f — Orbitals
subshells in the shell.
For.£.=0,m,=0 One of 7 possible f
---> s subshell with single orbital orbitals.
All have 3 planar
Fort=1,m,=-1,0, +1 surfaces.

---> p subshell with 3 orbitals
Fort=2,m, = -2,-1,0, +1, +2

---> d subshell with 5 orbitals
Fort=3,m,=-3,-2,-1,0, +1, +2, +3

---> f subshell with 7 orbitals
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Can you find the 3
surfaces here?

©2008
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Sign of the
wave function

s negative \

~

Surface of
spherical
node

x

Sign of the
wave function
is positive

25 orbital

*Orbitals also have spherical

nodes

*Number of spherical nodes

=n-1-1
*For a 2s orbital:

No.of nodes=2-0-1=1
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Dot Picture
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