

Electromagnetic Radiation

Ultraviolet radiation

Electromagnetic Radiation

- Waves have a frequency
- Use Greek letter "nu", V, for frequency, and units are "cycles per sec" or hertz
- All radiation: $\boldsymbol{\lambda} \cdot \boldsymbol{V}=\mathrm{C}$
- $c=$ velocity of light $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
- Long wavelength --> low frequency
- Short wavelength --> high frequency
©2006

Electromagnetic Radiation
Red light has $\lambda=700$ nm. Calculate the frequency.
$\mathbf{7 0 0 \mathbf { n m } \cdot \frac { \mathbf { 1 \times 1 0 ^ { - 9 } } \mathbf { ~ m } } { \mathbf { 1 ~ n m } } = 7 . 0 0 \times 1 0 ^ { - 7 } \mathbf { ~ m }}$
Freq $=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{7.00 \times 10^{-7} \mathrm{~m}}=4.29 \times 10^{14} \mathrm{~s}^{-1}$

Electromagnetic Radiation

	Short wavelength --> high frequency high energy Long wavelength --> low frequency low energy

Chapter 7 - Atoms — Part 1

 \section*{Photoelectric Effect
 \section*{Photoelectric Effect
 Understand experimental observations if light consists of particles called PHOTONS of discrete energy.}

PROBLEM: Calculate the energy of 1.00 mol of photons of red light.
$\lambda=700 . \mathrm{nm}$
$v=4.29 \times 10^{14} \mathrm{sec}^{-1}$

Chapter 7 - Atoms — Part 1

Niels Bohr
(1885-1962)
Bohr's greatest contribution to science was in building a simple model of the atom. It was based on an understanding of the SHARP LINE EMISSION SPECTRA of excited atoms.

目 \leftarrow

Line Emission Spectra of Excited Atoms

- Excited atoms emit light of only certain wavelengths
- The wavelengths of emitted light depend on the element.

- Excited atoms can emit light.
- Here the solution in a pickle is excited electrically. The Na^{+}ions in the pickle juice give off light characteristic of that element.

Atomic Spectra and Bohr

One view of atomic structure in early 20th century was that an electron (e-) traveled about the nucleus in an orbit.

Electron orbit

1. Any orbit should be possible and so is any energy.
2. But a charged particle moving in an electric field should emit energy.
End result should be destruction!
0206
© 2006

Atomic Spectra and Bohr

Bohr said classical view is wrong. Need a new theory - now called QUANTUM or WAVE MECHANICS.
e- can only exist in certain discrete orbits

- called stationary states.
e - is restricted to QUANTIZED energy states.
Energy of state $=-\mathbf{C} / \mathbf{n}^{2}$
where $\mathrm{n}=$ quantum no. $=1,2,3,4, \ldots$

Atomic Spectra and Bohr

Energy of quantized state $=-B / n^{2}$

- Only orbits where $\mathbf{n}=$ integral no. are permitted.
- Radius of allowed orbitals $=\mathrm{n}^{2} \cdot(0.0529 \mathrm{~nm})$
- But note - same eqns. come from modern wave mechanics approach.
- Results can be used to explain atomic spectra of hydrogen.

Chapter 7 - Atoms — Part 1

$\Delta E=-(3 / 4) C$

$$
E=h v
$$

C has been found from experiment (and is now called R, the Rydberg constant)
$R(=C)=1312 \mathrm{~kJ} / \mathrm{mol}$ or 3.29×10^{15} cycles/sec so, E of emitted light

$$
=(3 / 4) R=2.47 \times 10^{15} \mathrm{sec}^{-1}
$$

and $\lambda=\mathrm{c} / v=121.6 \mathrm{~nm}$
This is exactly in agreement with experiment!

Quantum op Wave Mechanics

38

115 g baseball (0.115 kg) at 100 mph
$\lambda=1.3 \times 10^{-32} \mathrm{~cm}$
目
e- with velocity $=$
$1.9 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$ $\lambda=0.388 \mathrm{~nm}$

Chapter 7 - Atoms — Part 1

Symbol	Allowed values Description	
n (major)	$1,2,3, \ldots$	Orbital size and energy where $\mathrm{E}=-\mathrm{B} / \mathrm{n}^{2}$)
ℓ (angular)	$0,1,2, . . \mathrm{n}-1$	Orbital shape or type (subshell)
m_{ℓ} (magnetic)	$-\ell . .0 . .+\ell$	Orbital orientation
$\#$ \# of orbitals in subshell $=2 \ell+1$		

p Opbitalls				Typical p orbital		
When $\mathrm{n}=2$, then $\ell=0$ and 1 Therefore, in $\mathrm{n}=2$ shell there are 2 types of orbitals - 2 subshells For $\ell=0 \quad \mathrm{~m}_{\ell}=0$ this is an s subshell (2s) For $\ell=1 \quad \mathrm{~m}_{\ell}=-1,0,+1$ this is a p subshell (2p) with 3 orbitals				When $\mathrm{I}=1$, there is a PLANAR NODE thru the nucleus.		
						Ne
Li	Be	B	C	N	0	F

The three \mathbf{p} orbitals lie 90° apart in space

63
$3 d_{x-y}{ }^{2}{ }^{2}$ Orbital

동
\rightarrow

Boondary
Surface

$$
4
$$

位
Dot Picture

f Orbitals

When $\mathrm{n}=4, \ell=0,1,2,3$ so there are 4 subshells in the shell.
For $\ell=\mathbf{0}, \mathbf{m}_{\ell}=\mathbf{0}$
---> s subshell with single orbital
For $\ell=1, m_{\ell}=-1,0,+1$
$--->p$ subshell with 3 orbitals
For $\ell=2, m_{\ell}=-2,-1,0,+1,+2$
---> d subshell with 5 orbitals
For $\ell=3, m_{\ell}=-3,-2,-1,0,+1,+2,+3$
---> f subshell with 7 orbitals
02006

